
Code Protection
through Obfuscation

Pedro Fortuna

SecAppDev 2018

Code Protection through Obfuscation – Pedro Fortuna | jscrambler.com 2

About Me

P E D R O F O R T U N A
CO-FOUNDER & CTO @ JSCRAMBLER

SECURITY, JAVASCRIPT

@PEDROFORTUNA

Code Protection through Obfuscation – Pedro Fortuna | jscrambler.com 3

1
What is Code Obfuscation?

2

Obfuscation Concepts

3

Obfuscation Process

4

Obfuscation Transformations

5
Beyond Obfuscation

6

Conclusions

7

Q & A

Agenda

Code Protection through Obfuscation – Pedro Fortuna | jscrambler.com 4

•  CyberSecurity Coalition

W H A T I S C O D E
O B F U S C A T I O N

PART 1

Code Protection through Obfuscation – Pedro Fortuna | jscrambler.com 5

Intellectual Property Protection

Alice

Software Developer
Sells her software over the Internet

Bob

Reverse Engineer
Wants key algorithms and data structures

Does not need to revert back to original source code

Legal or Technical
Protection?

Code Protection through Obfuscation – Pedro Fortuna | jscrambler.com 6

Intellectual Property Protection

?

I P P r o t e c t i o n

Legal Technical

Encryption

Trusted Computing

Server-Side Execution

Obfuscation

Code Protection through Obfuscation – Pedro Fortuna | jscrambler.com 7

So when does it make sense?

• When offering the sensitive computation on the server is not an option
•  You may not have one
•  Standalone offline playable games
•  Mobile applications
•  Widgets / UI Controls
•  Desktop applications (Electron, NW.js)

•  You may not want one
•  May not be cost effective doing computations on a server

 (you have to guarantee 100% uptime, support teams)

•  Latency

Code Protection through Obfuscation – Pedro Fortuna | jscrambler.com 8

So when does it make sense?

• When using trusted computing is not an option
•  Not generally available in everyday devices => reduced clientele
•  Cost

• When adversaries have physical access to the system and to
the code (Man At The End - MATE)
•  (some) Mobile applications
•  IoT
•  Gadgets
•  Desktop applications
•  On prem deployments
•  A growing number of Web Applications

Code Protection through Obfuscation – Pedro Fortuna | jscrambler.com 9

So when does it make sense?

• Web applications are being target by bots
•  Crawlers
•  Automated account registration
•  Abuse
•  Malicious extensions
•  UI Redressing / Clickjacking
•  Cryptojacking
•  Man in the Browser (MITB) attacks
•  …

Code Protection through Obfuscation – Pedro Fortuna | jscrambler.com 10

Code Obfuscation

Obfuscation
 “transforms a program into a form that is more difficult for

an adversary to understand or change than the original code” [1]

More Difficult

 “requires more human time, more money, or more computing
power to analyze than the original program.”

[1] in Collberg, C., and Nagra, J., “Surreptitious software: obfuscation, watermarking, and tamperproofing for software protection.”,
Addison-Wesley Professional, 2010.

Code Protection through Obfuscation – Pedro Fortuna | jscrambler.com 11

Code Obfuscation

Lowers the Code Quality in terms of

Readability Maintainability

Delay program understanding

Time required to reverse it > program
useful lifetime

Resources needed to reverse it > value

obtained from reversing it

Delay program modification

Cost reversing it > cost of developing it

from scratch

Manually reversing obfuscation is always possible

Code Protection through Obfuscation – Pedro Fortuna | jscrambler.com 12

Code Encryption vs Obfuscation

•  This is a common misconception
•  Encrypted code is not executable by the browser or JS Engine

•  A decryption process is always needed

Executable JavaScript
Source Code

Non-Executable
Encrypted Code

Executable JavaScript
Source Code

Encryption Key Decryption Key

Web
Application

Encryption
Function

Decryption
Function JS Engine

Code Protection through Obfuscation – Pedro Fortuna | jscrambler.com 13

Code Encryption vs Obfuscation

•  JavaScript obfuscated code is still valid, ready to execute code
•  It does not require or includes a decryption function

•  Obfuscation is usually done in build-time

Executable JavaScript
Source Code

Executable JavaScript
Source Code

Web
Application

Obfuscation
Engine JS Engine

Code Protection through Obfuscation – Pedro Fortuna | jscrambler.com 14

Code Obfuscation Example

Source
http://plnkr.co/edit/osF9YRih8ucblO98VqXI

Obfuscated
http://plnkr.co/edit/lyVeqhOZmjCR7Pd24A5r

Beautified
http://plnkr.co/edit/xF9ZOm4NhaRA7ocBdLwv

Code Protection through Obfuscation – Pedro Fortuna | jscrambler.com 15

Use cases

•  Good
•  Protect Intellectual Property

•  Conceal algorithms / data

•  DRM

•  Prevent code theft and reuse

•  Enforce license agreements

•  Prevent tamper and abuse

•  As an extra security layer

•  Test the strength of security controls (IDS/IPS/
WAFs/web filters)

•  36pt Heavy
•  32pt Extrabold
•  30pt Medium
•  150% Blue

Code Protection through Obfuscation – Pedro Fortuna | jscrambler.com 16

Use cases

•  Good
•  Protect Intellectual Property

•  Hide algorithms / data

•  DRM

•  Prevent code theft and reuse

•  Enforce license agreements

•  Prevent tamper and abuse

•  As an extra security layer

•  Test the strength of security controls
(IDS/IPS/WAFs/web filters)

•  36pt Heavy
•  32pt Extrabold
•  30pt Medium
•  150% Blue

•  Evil
•  Bypass security controls (IDS/IPS/

WAFs/web filters)

•  Hide malicious code

Code Protection through Obfuscation – Pedro Fortuna | jscrambler.com 17

•  CyberSecurity Coalition

C O D E
O B F U S C A T I O N

C O N C E P T S

PART 2

Code Protection through Obfuscation – Pedro Fortuna | jscrambler.com 18

Obfuscating Transformation

P: source program
P’: target program

•  P and P’ must have the same observable behavior
•  as experienced by the user

•  P’ may have side-effects that P does not (e.g. send more network messages)
•  P’ will not have the same efficiency (slower, use more memory, bigger filesizes)

•  36pt Heavy
•  32pt Extrabold
•  30pt Medium
•  150% Blue

Code Protection through Obfuscation – Pedro Fortuna | jscrambler.com 19

Measuring Obfuscation

•  36pt Heavy
•  32pt Extrabold
•  30pt Medium
•  150% Blue

•  Collberg, C., Thomborson, C. and Low, D., 1997. A taxonomy of
obfuscating transformations. Department of Computer Science,
The University of Auckland, New Zealand.

•  Obfuscation quality
•  Potency
•  Resilience
•  Cost

•  Stealthiness
•  Maintainability
•  Diversity

Code Protection through Obfuscation – Pedro Fortuna | jscrambler.com 20

Obfuscation Potency

•  36pt Heavy
•  32pt Extrabold
•  30pt Medium
•  150% Blue

•  How much more difficult to read and understand (for a human)
• Measured in low, medium, high
•  How do we measure it?

•  Software Complexity Metrics
•  Program Length,
•  Cyclomatic Complexity,
•  Nesting Complexity,
•  Data Flow Complexity,
•  Fan-in/out Complexity,
•  Data Structure Complexity,
•  OO Metric

•  We aim to maximize them

Code Protection through Obfuscation – Pedro Fortuna | jscrambler.com 21

Obfuscation Potency

•  36pt Heavy
•  32pt Extrabold
•  30pt Medium
•  150% Blue

•  To increase potency
•  increase overall program size and introduce new classes and methods
•  introduce new predicates and increase the nesting level of conditional

and looping constructs
•  increase the number of methods arguments and inter-class instance

variable dependencies
•  increase the height of the inheritance tree
•  increase long-range variable dependencies

• Not a direct link, but a likelihood

Code Protection through Obfuscation – Pedro Fortuna | jscrambler.com 22

Obfuscation Potency

•  36pt Heavy
•  32pt Extrabold
•  30pt Medium
•  150% Blue

Identifiers
Renaming

Whitespace
Removal

Code Protection through Obfuscation – Pedro Fortuna | jscrambler.com 23

Obfuscation Potency

•  36pt Heavy
•  32pt Extrabold
•  30pt Medium
•  150% Blue

Add Predicates
Grow Program Size

Simple Optimization
Techniques

Code Protection through Obfuscation – Pedro Fortuna | jscrambler.com 24

Obfuscation Resilience

•  36pt Heavy
•  32pt Extrabold
•  30pt Medium
•  150% Blue

•  Resistance to automated deobfuscation techniques
•  “Potency confuses the human ⇔ Resilience confuses an automatic deobfuscator”
•  Programmer effort + Deobfuscator effort
• Measured on a scale from trivial, weak, strong, full, one-way

Code Protection through Obfuscation – Pedro Fortuna | jscrambler.com 25

Obfuscation Resilience

•  36pt Heavy
•  32pt Extrabold
•  30pt Medium
•  150% Blue

String Splitting

Identifiers
Renaming +

Comment
Removal

Code Protection through Obfuscation – Pedro Fortuna | jscrambler.com 26

Obfuscation Cost

•  36pt Heavy
•  32pt Extrabold
•  30pt Medium
•  150% Blue

• Execution time/space penalty due to the transformation
• Measured with the scale

• free: O(1)
• cheap: O(n)
• costly: O(np), p>1
• dear: exponentially more

• Impact on performance
• Runs per second, FPS
• Some do not: Identifiers renaming

• Impact on loading times
• Time before starting executing
• Some do not: Identifiers renaming

• File size increase

O(1)

O(n2)

Code Protection through Obfuscation – Pedro Fortuna | jscrambler.com 27

Obfuscation Stealthiness

•  36pt Heavy
•  32pt Extrabold
•  30pt Medium
•  150% Blue

• How hard is to spot?

• Obfuscated usually not stealthy

• Avoid telltale indicators

• eval()

• unescape()

• Large blocks of meaningless text

Code Protection through Obfuscation – Pedro Fortuna | jscrambler.com 28

Obfuscation & Maintainability

•  36pt Heavy
•  32pt Extrabold
•  30pt Medium
•  150% Blue

Lower Maintainability Mitigates code theft
and reuse

Maintainability
1

potency

Code Protection through Obfuscation – Pedro Fortuna | jscrambler.com 29

Obfuscation Diversity

•  36pt Heavy
•  32pt Extrabold
•  30pt Medium
•  150% Blue

“one of the major reasons attacks succeed is because of the static nature of
defense, and the dynamic nature of attack” - Fred Cohen, in “Operating

System Protection Through Program Evolution”, 1993.

Diversity

Increases attack complexity

Metamorphic & Polymorphic code

Removes attack references

Precludes automated attacks

Passive defense technique

Code Protection through Obfuscation – Pedro Fortuna | jscrambler.com 30

Metamorphic Code

•  36pt Heavy
•  32pt Extrabold
•  30pt Medium
•  150% Blue

• Code that outputs a semantically
equivalent version of itself

• Needs to

• Execute its function

• Parse itself

• Rewrite itself

• Launch new version

• Terminate

Code Protection through Obfuscation – Pedro Fortuna | jscrambler.com 31

Transcriptase Metamorphic Malware

•  36pt Heavy
•  32pt Extrabold
•  30pt Medium
•  150% Blue

• Based on its own a meta-language (useful for adding meta info on the instruction)
• Permutation, Variable/Function-name randomization, Variable/Function insertion
• Evades signature-based detection

Code Protection through Obfuscation – Pedro Fortuna | jscrambler.com 32

Polymorphic Code

•  36pt Heavy
•  32pt Extrabold
•  30pt Medium
•  150% Blue

• Relies on an external process that
outputs semantically equivalent code

•  Enables code rotation strategy
•  Precludes attack automation

Code Protection through Obfuscation – Pedro Fortuna | jscrambler.com 33

Obfuscation Transformation Types

•  36pt Heavy
•  32pt Extrabold
•  30pt Medium
•  150% Blue

Transformation target

Preventive Data Control Layout

[Collberg et al] A Taxonomy of Obfuscating Transformations

Code Protection through Obfuscation – Pedro Fortuna | jscrambler.com 34

Layout Transformations

•  36pt Heavy
•  32pt Extrabold
•  30pt Medium
•  150% Blue

•  Targets the lexical structure of the code

•  Examples
•  Source code formatting (low potency, one-way, free)
•  Names of variables (medium potency, one-way, free)

•  Essentially considered to have low potency and low resiliency

Code Protection through Obfuscation – Pedro Fortuna | jscrambler.com 35

Control Transformations

•  36pt Heavy
•  32pt Extrabold
•  30pt Medium
•  150% Blue

•  Targets the control flow of the program

•  Break up computations that logically belong together or merge
computations that do not
•  e.g. Function Outlining, Function Inlining, interleaved functions, cloned

functions
•  Insert new code (redundant or dead) or make algorithmic changes
•  Changes the ordering of functions and statements (changes locality of

computations)
•  Loop transformations - blocking / unrolling / fission

•  Usually the most potent and resilient transformations
•  Impact on performance is unavoidable
•  Tradeoff between efficiency and obfuscation

Code Protection through Obfuscation – Pedro Fortuna | jscrambler.com 36

Data Transformations

•  36pt Heavy
•  32pt Extrabold
•  30pt Medium
•  150% Blue

• Targets data structures

• Store data in unnatural storage classes
• e.g. store char literals in integers

• Encoding
• Split-variables
• Function outlining (e.g. of a string generation)
• Array restructuring (split, merge, fold, flatten)
• Array shuffle

• Suitable for temporary secrets or for stealthiness

Code Protection through Obfuscation – Pedro Fortuna | jscrambler.com 37

Preventive Transformations

•  36pt Heavy
•  32pt Extrabold
•  30pt Medium
•  150% Blue

•  Designed to reduce the efficiency of known obfuscation
techniques and tools

•  Examples:
•  Add data dependencies to prevent automated reversal
•  Add number of variables to make automated tools become

extremely slow and perhaps even crash
•  Explore know bugs in known reverse engineering tools
•  Add aliases and variable dependencies to preclude program slicing
•  Use of strong opaque predicates

Code Protection through Obfuscation – Pedro Fortuna | jscrambler.com 38

Opaque Predicates

•  36pt Heavy
•  32pt Extrabold
•  30pt Medium
•  150% Blue

•  Expression which is known to the obfuscator in compile time but difficult/costly
for an automated debofuscator to revert

•  Examples:
•  if (isPrime(15460178913505..1243)) …
•  if (hashDigest(“string”) === “AB40...DFF”) ...
•  if (a * (a + 1) * a % 2 == 0) …
•  if (a.b(c, d) !== e) …

•  Shouldn’t be canned opaque predicates
•  Ideally similar to real program constructs
•  Deobfuscator tool can implement functions if they are predictable
•  Essential for designing resilient control obfuscation transformations
•  It’s not trivial to create highly resilient opaque predicates

Code Protection through Obfuscation – Pedro Fortuna | jscrambler.com 39

Scope of Transformation

•  36pt Heavy
•  32pt Extrabold
•  30pt Medium
•  150% Blue

•  Local: single basic block of a Control Flow Graph (CFG)

•  Global: affects an entire CFG

•  Inter-procedural: affects the flow of information

between procedures

•  Inter-process: affects the interaction between

independently executing threads

Code Protection through Obfuscation – Pedro Fortuna | jscrambler.com 40

•  CyberSecurity Coalition

C O D E
O B F U S C A T I O N

P R O C E S S

PART 3

Code Protection through Obfuscation – Pedro Fortuna | jscrambler.com 41

Code Transformation Process

•  36pt Heavy
•  32pt Extrabold
•  30pt Medium
•  150% Blue

Scanner

Sequence of characters

Lexical Analysis

Parser

Sequence of tokens

Syntactic Analysis /
Parsing

Code
Transformations

Abstract Syntax Tree (AST)

Transformations
applied in sequence

Write AST to files

Target Code

Target Code

Simple Translation

Code Protection through Obfuscation – Pedro Fortuna | jscrambler.com 42

Abstract Syntax Tree

•  36pt Heavy
•  32pt Extrabold
•  30pt Medium
•  150% Blue

Statement
Sequence

while

Compare
Operation

variable
num2 Constant 0

branch

Operation >

variable
num1

variable
num2

assign

variable
num1 Operation -

variable
num1

variable
num2

variable
num2 Operation -

variable
num2

variable
num1

return

return num1

Code Protection through Obfuscation – Pedro Fortuna | jscrambler.com 43

Abstract Syntax Tree

•  36pt Heavy
•  32pt Extrabold
•  30pt Medium
•  150% Blue

http://esprima.org/demo/parse.html http://azu.github.io/esgraph-graphviz-online/

Code Protection through Obfuscation – Pedro Fortuna | jscrambler.com 44

Transformation Chaining effect

•  36pt Heavy
•  32pt Extrabold
•  30pt Medium
•  150% Blue

Transformation #1

Transformation #2

Transformation #n

Write AST to files

Source ASTs

Creates targets for
Transformation #2

(…)

ASTs modified by T#1

ASTs modified first by
T#1, then by T#2

ASTs modified first by
all T’s, in a specific
order

•  Each transformation potentiates the

ones that follow
•  Order matters
•  Randomizing order

•  Higher diversity
•  Probably higher cost

•  Careful selection is advised
•  Use good standards
•  Optionally, check with an expert

Code Protection through Obfuscation – Pedro Fortuna | jscrambler.com 45

•  CyberSecurity Coalition

C O D E O B F U S C A T I O N
T R A N S F O R M A T I O N S

PART 4

Code Protection through Obfuscation – Pedro Fortuna | jscrambler.com 46

Transformation Example #1
Dead code injection

•  36pt Heavy
•  32pt Extrabold
•  30pt Medium
•  150% Blue

•  Generates statements similar to what exists in the program
•  Uses strong non-local opaque predicates
•  Cheap

Dead code
Injection

Code Protection through Obfuscation – Pedro Fortuna | jscrambler.com 47

Transformation Example #2
Dot to bracket notation

•  36pt Heavy
•  32pt Extrabold
•  30pt Medium
•  150% Blue

•  Zero potency, Zero Resiliency, cheap

•  Why would we want this?

Code Protection through Obfuscation – Pedro Fortuna | jscrambler.com 48

Transformation Example #3
Dot to bracket notation + Duplicate Literals Removal

•  36pt Heavy
•  32pt Extrabold
•  30pt Medium
•  150% Blue

•  Generated more targets

•  Some transformations are only meant to potentiate others

Code Protection through Obfuscation – Pedro Fortuna | jscrambler.com 49

Transformation Example #4
Dot to bracket notation + Duplicate Literals Removal + String Splitting &

Concealing + Identifiers Renaming

•  36pt Heavy
•  32pt Extrabold
•  30pt Medium
•  150% Blue

•  Eliminated strings and object names

•  But we haven’t really changed the control flow that much

Code Protection through Obfuscation – Pedro Fortuna | jscrambler.com 50

Control Flow Flattening

•  36pt Heavy
•  32pt Extrabold
•  30pt Medium
•  150% Blue

•  Splits all the source code basic blocks and
puts them all inside a single infinite loop with
a `switch` statement that controls the program
flow

•  program flow becomes significantly harder to
follow because natural conditional constructs
that made the code easier to read are now
gone

Code Protection through Obfuscation – Pedro Fortuna | jscrambler.com 51

Control Flow Flattening (with Dead Clones)

•  36pt Heavy
•  32pt Extrabold
•  30pt Medium
•  150% Blue

•  Dead clones increase the potency

•  Cheap

•  File Size Increase

Code Protection through Obfuscation – Pedro Fortuna | jscrambler.com 52

•  36pt Heavy
•  32pt Extrabold
•  30pt Medium
•  150% Blue

Control Flow Flattening (with Clones)

•  (real) Clones increase the potency
and resilience

Code Protection through Obfuscation – Pedro Fortuna | jscrambler.com 53

•  36pt Heavy
•  32pt Extrabold
•  30pt Medium
•  150% Blue

•  Improved resilience

Control Flow Flattening (with Opaque Predicates)

Code Protection through Obfuscation – Pedro Fortuna | jscrambler.com 54

•  36pt Heavy
•  32pt Extrabold
•  30pt Medium
•  150% Blue

•  Maximized resilience

•  Even better if polymorphic

Control Flow Flattening (all options)

Code Protection through Obfuscation – Pedro Fortuna | jscrambler.com 55

•  36pt Heavy
•  32pt Extrabold
•  30pt Medium
•  150% Blue

Transformation Example #5
Dot to bracket notation + Duplicate Literals Removal + String Splitting &
Concealing + Identifiers Renaming + Control Flow Flattening + Function

Reordering + Function Outlining
•  Eliminated strings and objects names

•  But we haven’t really changed the control flow that much

Code Protection through Obfuscation – Pedro Fortuna | jscrambler.com 56

•  CyberSecurity Coalition

B E Y O N D
O B F U S C A T I O N

PART 5

Code Protection through Obfuscation – Pedro Fortuna | jscrambler.com 57

What’s Beyond

•  36pt Heavy
•  32pt Extrabold
•  30pt Medium
•  150% Blue

Code Traps

Tamper-resistant

Anti-debugging

Anti-poisoning

Anti-emulation

Self-healing

...

Code Protection through Obfuscation – Pedro Fortuna | jscrambler.com 58

Code Traps

•  36pt Heavy
•  32pt Extrabold
•  30pt Medium
•  150% Blue

•  Added logic to enforce a certain restriction
•  Scattered
•  They can work together
•  Ideally applied to different targets
•  Similarly looking to other constructs
•  Upon detection, multiple reactions can occur

•  Break
•  Derail program execution
•  Redirect, refresh
•  Delete cookies
•  Alert

•  Examples
•  Expiration date
•  Domain lock
•  OS lock (e.g. Android)
•  Browser lock (e.g. Chrome)

Code Protection through Obfuscation – Pedro Fortuna | jscrambler.com 59

Self-defending Code

•  36pt Heavy
•  32pt Extrabold
•  30pt Medium
•  150% Blue

•  Anti-tampering
•  Integrity checks
•  Can be based on checksums
•  May use introspection and embedded

checksums
•  <or> Remote attestation
•  Upon detection breaks the code
•  Usually combined with other active defense

techniques such as anti-debugging

•  Self-defending
•  Aims to detect debugger use
•  Can be time-based
•  Can look for hints that the debugger is being

used

Code Protection through Obfuscation – Pedro Fortuna | jscrambler.com 60

•  CyberSecurity Coalition

C O N C L U S I O N S

PART 6

Code Protection through Obfuscation – Pedro Fortuna | jscrambler.com 61

Conclusions

Apart from legal, the only solution to protect against Reverse Engineering when

physical access is given to the software (MATE attacks)

e.g.’s Mobile applications, on prem, desktop, etc

Obfuscation value depends on

The sophistication of the code transformations

The power of the available deobfuscation techniques

The amount of resources available (time, motivation, money, etc) to the attacker

Code Protection through Obfuscation – Pedro Fortuna | jscrambler.com 62

Conclusions Continued

Obfuscation potency is important, but resilience is more

But people often evaluate obfuscation merely based on its potency (not real)

Evaluating resilience is hard (check session #2)

Control FlowObfuscation combined with strong resilient Opaque predicates is essential

Diversity is important => can help preclude attack automation

Success in using obfuscation requires searching for good tradeoffs for specific applications

Tamper-resistant code takes code protection resilience to the next level

Code Protection through Obfuscation – Pedro Fortuna | jscrambler.com 63

•  CyberSecurity Coalition

T H A N K Y O U !

@pedrofortuna

